

Department of Computer Science Southern Illinois University Carbondale

CS 491/531 SECURITY IN CYBER-PHYSICAL SYSTEMS

Lecture 7: Industrial vs. Business Network

DR. ABDULLAH AYDEGER

LOCATION: ENGINEERING A 409F

EMAIL: AYDEGER@CS.SIU.EDU

Outline

Details about SCADA Network

- Network Topology
- Network Segmentation

Operational Technology

Recall: SCADA Example

ICS Network Architecture

<u>ICS Network</u>: Any network that supports the interconnectivity of and communication between devices that make up or support an ICS

Various options depending on the application

Two distinct networks:

- Industrial control and automation
- Supervisory control or SCADA

These connect to Business/Enterprise Networks which then connects to Internet

- TCP/IP based networks
- They have different requirements

Enterprise vs SCADA

ICS vs SCADA vs Enterprise

Function	Industrial Control	SCADA	Enterprise
Real-time operation	Critical	High	Best Effort
Reliability Req.	Critical	High	Best Effort
Bandwidth Req.	Low	Low/Medium	High
Latency	Low, Consistent	Low, Consistent	NA, Retransmission is acceptable
Protocols Used	Realtime	Realtime	Non realtime

Network Topologies

Ring

Bus

Star

Wireless Mesh

Ring Topology

Bus Topology

Star Topology

Wireless Mesh Topology

Network Segmentation/Isolation of Systems

ICS Network's Segmentation

Segmentation by Layers

Segmentation/ Segregation	Provided By	Management	Performance	Network Security	ICS Protocol Support	OT Applicability
Physical Layer	Air Gap Data Diode	None	Good	Absolute	N/A	High
DataLink Layer	VLAN	Moderate	Good	Very Broad	High	High
Network Layer	Layer 2 Switch (via VLAN interfaces only) Layer 3 Switch Router	Low	Moderate	Broad	High	High
Application Layer	Application Proxy/IPS "Next Generation" Firewall/IPS Content Filter	High	Poor	Very Specific	Low	Low

Physical vs. Logical Segmentation

Network Metrics

Latency

Jitter

Bandwidth

Throughput

Latency

Time it takes for a packet to travel from source to destination

• Usually calculated as round trip time (RTT)

Potential Causes of Increased Latency

Jitter

Jitter, or network jitter, is the variance in time delay between data packets over a network

It is a disruption in the normal sequence of sending data packets

The technical term for jitter "packet delay variance"

Bandwidth and Throughput

Bandwidth:

Amount of data can be transferred in a given period

of time

• Maximum rate

Throughput:

The rate of successful message delivery over a communication channel

Wireless ICS

Wireless Protocols

Bluetooth

Microwave

Satellite

Zigbee

Z-wave

WirelessHART

Operational Technology vs. Information Technology

<u>IT</u>: involving the development, maintenance, and use of computer systems, software, and networks for the <u>processing and distribution of data</u>

<u>OT</u>: hardware and software that detects or causes a change through the direct monitoring and/or control of <u>physical devices</u>, <u>processes and events</u> in the enterprise

OT Operational Objectives (Differences)

Maintaining profitable margins

Minimizing the safety or <u>environmental</u> impacts

Limiting damage or wear to <u>physical assets</u>

Managing broader <u>society dependences</u> on the ICS

OT's Technical Differences

Unique <u>communication protocols and architectures</u>

<u>Real-time performance</u> demands

Dependence on <u>resource constrained embedded devices</u>

<u>Domains specific device</u> manufactures and integrators

Complex integration of digital, analog, and mechanical controls

OT's Real-Time Performance Example

IEC 61850 communication latency requirements

Functions	Message type	Delay (ms)
Fault isolation and protection	Type 1A/P1	3
	Type 1A/P2	10
Routine automation	Type 1B/P1	100
functions	Type 1B/P1	20
Measurement readings	Type 2	100
	Туре3	500

Performance overhead for cryptographic operations (2.8 GHz AMD processor in a

publisher/ subscriber architecture)

Algorithm	Pub (ms)	Sub (ms)	Total (ms)
128 bit AES	0.04	0.03	0.07
SHA-256	0.01	0.01	0.02
2048 bit RSA	59.00	2.04	61.04
1024 bit DSA	4.10	9.80	14.90